
 

Payment Card Industry (PCI)  
Terminal Software Security  
 

 

Best Practices 
Version 1.0 
December 2014 



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page i 

Document Changes  

Date Version Description 

June 2014 Draft Initial 

July 23, 2014 Core Redesign for core and other 

August 2014  Added comments from 06 August meeting 

August 2014  Added comments from 20 August meeting 

September 2014 

Additional 
Task 
Force 
Input 

Proposal for a different document structure 

September 2014 Final 
Draft Final draft from face-to-face meeting  

December 2014 Initial 
Release  

 
    



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page ii 

Table of Contents 
Document Changes ..................................................................................................................... i 
Introduction ................................................................................................................................. 1 
Purpose of This Document .......................................................................................................................... 1 
Relationship between other PCI standards ................................................................................................. 1 
Examples of Potential Threats .................................................................................................................... 2 
Secure Software-Development Life Cycle................................................................................................... 2 
Role Definition within TSSBP ...................................................................................................................... 2 

A: Security Awareness Training .................................................................................................. 3 
B: Secure Software-Development Process ................................................................................. 4 
C: Device-Level Testing ............................................................................................................ 11 
D: Internal Process Reviews ..................................................................................................... 12 
Useful references ...................................................................................................................... 13 



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 1 

Introduction 

Purpose of This Document 
The PCI Terminal Software Security Best Practices (TSSBP) document gives detailed guidance on the 
development of any software designed to run on PCI PTS POI approved devices. The PTS POI approval 
covers the device “firmware,” as defined in the PTS standard. However, other software on the POI not 
defined as firmware can still have an effect on the security of the device and must therefore be developed 
and maintained with that in mind. The goal of this document is to ensure that all organizations responsible 
for software development (and device management) understand the potential threats, and employ 
appropriate processes throughout the development life cycle to counter those threats. The processes 
followed will depend on the organization, the type of application being developed, and the software 
languages used, but the principles remain the same. 

Note that this document covers all software which runs on the device not covered in the PTS POI 
program, including but not limited to: 

 Payment applications 

 Non-payment applications 

 EMV kernels and other libraries 

 Third-party (e.g. open-source) software 

Relationship between other PCI standards 
The PTS POI program is primarily concerned with device characteristics impacting the security of the POI 
device used by the cardholder during a financial transaction. The requirements also include device 
management up to the point of initial key loading, but the evaluation process only addresses device 
characteristics.   

Logical and physical interfaces of the POI device are assessed for providing protection from being 
influenced by logical anomalies, but the applications (EMV kernel, payment and nonpayment 
applications) are not assessed under PTS POI or the PA-DSS standard unless the solution is being 
assessed under the PCI P2PE program. The Terminal Software Security Best Practices are focused on 
all terminal applications, to ensure that industry standard secure coding practices are followed and 
prevent compromise of merchant POI devices.  

All applications that store, process, or transmit cardholder data are in scope for an entity’s PCI DSS 
assessment, including applications that reside within an approved PTS POI device. The PCI DSS 
assessment should verify the software is properly configured and securely implemented per PCI DSS 
requirements. If the software has undergone any customization, a more in-depth review will be required 
during the PCI DSS assessment, as the application may no longer be representative of the version that 
was previously validated.  

Secure payment applications, when implemented in a PCI DSS-compliant environment, will minimize the 
potential for security breaches leading to compromises of primary account number (PAN), full track data, 
card verification codes and values (CAV2, CID, CVC2, CVV2), PINs and PIN blocks, and the damaging 
fraud resulting from these breaches.  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 2 

Examples of Potential Threats 
It is not the intention of this document to maintain a detailed list of current threats, as this information is 
platform-specific and available from the Internet. However, some background knowledge on the general 
types of threats that need to be considered will be helpful when reading the rest of the document. Two 
examples are command injection and buffer overflow. 

Command injection is where a command interpreter (such as a Linux Shell or SQL interpreter) is passed 
some text during normal operation, but where that text is not adequately checked beforehand. The calling 
application passes the text to the interpreter believing it to be a filename, for example, but it in fact 
contains special characters—which means that the interpreter doesn’t treat it as a filename, it treats it as 
another command to execute. 

Buffer overflow occurs when the software gets more input data than it would under normal circumstances, 
and the buffer is too small to store all that data. The software should check this and handle the error in a 
defined way, but poorly written software may just continue writing data beyond the end of the buffer and 
overwrite other items stored in neighboring memory. With careful consideration of what data is written 
beyond the end of the buffer, an attacker can change the execution of the program. 

Secure Software-Development Life Cycle 
The key to addressing potential threats is a robust, secure software-development life cycle. All software-
development organizations should: 

 Understand the current threats and how they impact the software. 

 Develop and maintain secure coding standards and other processes to address those threats. 

 Conduct reviews (including source-code reviews) to ensure the defined processes are being 
followed. 

 Test the software components and terminal as a whole to give additional confidence that nothing 
has been overlooked. 

Role Definition within TSSBP 
This document makes reference to certain roles within an organization as related to software security. It is 
not the intention to define job titles but simply to define the sort of person who is envisaged to perform 
these roles. These roles should be clearly assigned to individuals within the organization: 

Software Developer – The person writing the software. This person should be skilled in writing software 
in the appropriate programming language, should be familiar with and follow the company procedures, 
and should be provided with good security awareness training.  

Security Champion – The technical person with primary responsibility for software security. This person 
should keep up to date with all threats that could affect the software written by the organization, and 
should ensure that secure coding standards are maintained and being used. 

Peer Reviewer – The person responsible for peer review. This person is typically another software 
developer who didn’t write the software being reviewed. They should be technically capable (with enough 
experience and training) of performing the review.  

Release Authority – The person responsible for approving the final software release. They should have 
the skills, training, and authority to ensure that all of the secure software development processes leading 
up to the formal software release have been followed.  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 3 

A: Security-Awareness Training 
The first step in maintaining secure software is to fully understand all of the latest threats applicable to the 
system in question, and what techniques can be deployed to counter them. The “training” referred to in 
this section can be achieved through a combination of external training, internal knowledge exchange, 
and research (especially on the Internet). 

Terminal Software 
Security Best Practices Guidance 

A1 Appoint a Security 
Champion 

The software-development team should have an assigned technical 
person responsible for security. The Security Champion will ensure that 
the team is focused on software security and that the defined security 
procedures are followed. The Security Champion ensures that they and 
the rest of the software-development team keep up to date on the latest 
threats. 

A2 Security Champion 
training 

The assigned security champion is trained to understand the roles of 
the security champion, is trained in the organization’s secure coding 
process, and is trained on vulnerability assessment and emerging 
threats.  

A3  Software Developer 
training 

The software developer is trained on the organization’s secure coding 
practices and understands the policies and procedures around secure 
code development.  

A4  Auditable Training 
program 

The company maintains an auditable training and research program 
that ensures all personnel are properly trained and that the policies and 
procedures are regularly reviewed and updated to remain current.  

 

  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 4 

B: Secure Software-Development Process  
Once the threats are understood, the organization should define, implement, and maintain secure 
software-development procedures that ensure these threats are mitigated. The diagram below is an 
example of a typical secure software-development process for reference. It is not the intention to mandate 
a particular software-development methodology; but whichever one is used should address each of the 
points in this document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The policies and procedures maintained by the organization should address each of the points below. In 
addition, the organization should maintain auditable records to demonstrate that their procedures are 
being followed, and should independently audit those records to ensure that is the case.  

Terminal Software Security Best 
Practices Guidance 

B1  All software should be documented. Documentation should be maintained at a level where the 
operation of the software should be clear to any 
experienced software developer with no prior knowledge of 
the system.   

B1.1  System architecture should be 
documented. 

A software-architecture document should contain diagrams 
that describe the components within the system and how 
they interact. Reference should be made to API and UI 
documentation as required to detail the interfaces, etc. 

Analyze 

Design 

Implement 

Review 

Test 

Release 



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 5 

Terminal Software Security Best 
Practices Guidance 

B1.2  All interfaces should be clearly 
documented. 

API and UI documents clearly defining the interfaces 
should be produced, containing: 
• Clear definitions of all expected inputs, outputs, and 

error conditions;  
• All configuration options and default configurations; 

and 
• Update and remote-access parameters, if applicable. 

B1.3  All sensitive data should be 
identified. 

The documentation should identify: 
• All sensitive data (such as PANs),  
• Data flow through the program,  
• How data is handled in each function,  
• How data is eventually deleted, and 
• Details of any cryptography used, 

B1.4  Security guidance should be 
provided. 

Where the security of the system could be affected by 
incorrect configuration, installation, or maintenance, clear 
guidance documentation should be provided to highlight 
this.  

B1.5  Define a security-testing plan.  Create a plan for the security testing required for the 
terminal as a whole. This plan should include but not be 
limited to port scanning, unintentional clear-text data, 
logging review, default passwords, test data, penetration 
testing, communications security, and the integrity of 
signed files.  

B1.6  Define a software-versioning 
methodology as part of their 
system development lifecycle. 

Changes to applications should be properly identified and 
enumerated. The version scheme should clearly specify 
how each of the various elements is used in the version 
number. 

B2  All software should be well-structured 
and commented.  

Software should be well-structured and have detailed, 
accurate comments such that the purpose and flow of each 
module and function is clear.   

B3  A rigorous change management 
system should be used. 

The organization should utilize a secure software change 
management system such that all development is 
traceable and access restricted. All changes should be  
reviewed and approved prior to release.  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 6 

Terminal Software Security Best 
Practices Guidance 

B4  Stringent secure coding standards 
should be written, maintained, and 
used. 

The organization should develop and maintain secure 
coding standards. These should be specific to the software 
being developed and the languages used to write it. They 
should draw on other generally recognized coding 
standards (e.g., Ref1), and should address all of the 
security threats identified during security awareness 
training. Some general topics are covered here with 
examples for clarification, but the standards should cover 
all applicable threats. 

B4.1  Use of known unsafe functions 
should be banned. 

Certain standard functions are known to be unsafe, and 
their use should be banned. A list of all such functions 
should be created, and safer alternatives should be 
mandated. Two such examples in the C language are 
system(), which allows command strings to be executed by 
the system, and strcpy(), which has no length-checking on 
the output buffer.  

B4.2  Boundary checks should be 
performed on all buffers. 

Every function handling buffers should accept parameters 
to indicate the size of the buffer and should perform 
boundary checks on those buffers during use.  

B4.3  Use of signed and unsigned data 
types should be used 
appropriately. 

In particular, variables used to hold the size of buffers 
should be unsigned. Integer operations should be checked 
for overflows/underflows. 

B4.4  All inputs into the system should 
be strictly validated. 

User input and other input from outside of the system 
should be strictly checked against whitelists to ensure any 
unexpected characters or parameters are rejected. 

B4.5  Any strings sent to command 
interpreters must be strictly 
checked. 

Any text sent to a command interpreter or passed as a 
parameter to a command must be strictly validated. 
Unexpected characters within the text can be used to 
supply additional, unexpected commands or parameters.   

B4.6  Return values should always be 
checked. 

Any error conditions should be handled correctly and 
propagated through the calling functions such that the 
system fails securely with no unexpected operation. 

B4.7  Race conditions should be 
avoided. 

An example is a “time-of-check, time-of-use” race condition 
where a file is checked at one point and used just after, 
with the assumption that the previous check is still valid. 
This assumption may not be correct if the system allows 
the file to be modified in between.    



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 7 

Terminal Software Security Best 
Practices Guidance 

B4.8  Exploit mitigation techniques 
should be used where possible. 

Once an attacker has found a weakness, they still have to 
exploit it. Many systems support the use of exploit-
mitigation techniques, which make the exploitation phase 
much harder, or even impossible. These should only be 
seen as a second line of defense, however. Examples 
include (but are not limited to): stack canaries, heap 
cookies, Address Space Layout Randomization (ASLR), 
and Data Execution Prevention (DEP). 

B4.9  Compiler warnings should be set 
to high.  

Many compilers have the option to perform code-checking 
at compile time. The warning level should be set as high as 
possible to warn about every possible issue, and then the 
software should be developed to remove all warnings.  

B4.10  Static analysis tools should be 
used where possible. 

Static analysis tools should also be used as part of the 
normal review process to help spot potential security 
issues. 

B4.11  Reference should be made to the 
relevant security guidance 
provided by the terminal vendor. 

PTS POI terminal vendors provide security guidance for 
the correct use of the terminal. This guidance must be 
strictly adhered to when writing software that runs on the 
terminal. 

B5  Stringent secure coding standards 
specific to payments (e.g., payment 
applications, EMV kernels, etc.) 
should be written, maintained, and 
used. 

Any applications with access to sensitive cardholder data, 
or with the ability to display prompts on a PIN entry device, 
need specific guidelines in place to handle this. These 
guidelines can be included within the organization’s 
general coding standards or maintained separately. Some 
general topics are covered here, but the standards should 
cover all security issues applicable to the system.  

B5.1  Prompts should be strictly 
controlled.  

If the application has delegated responsibility for prompts, 
it must ensure that it has full control of what is on the 
display whenever numeric keyboard entry is enabled. If a 
prompt file is used it must be signed, and it must not be 
possible to modify the prompt between the checking of the 
signature and the display of the prompt. The application 
must never prompt for a PIN. 

B5.2  Test data and accounts should 
be removed before release to 
customer. 

All test data and developer credentials should be removed 
prior to releasing and signing of the application for 
production.  

B5.3  Back-out or product de-
installation procedures should be 
developed.  

For each change, there should be back-out procedures in 
case the change fails or adversely affects the security of 
the application, to allow the application to be restored to its 
previous state. 



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 8 

Terminal Software Security Best 
Practices Guidance 

B6.  The application should support and 
enforce the use of unique user rights 
that separate administrative functions 
from operator functions.  

 The use of hardcoded passwords 
is prohibited. 

Administrative, user, and operator rights should be 
separated to prevent unintended changes to the payment 
application settings or accidental disclosure of the 
administrative password. Hardcoded passwords should 
never be used.   

B6.1  The application should enforce 
the changing of all default 
passwords for all accounts 
managed by the application and 
should force a password change 
after installation and prior to 
activation for use.   

 This applies to all accounts, 
including user accounts, 
administrative, and operator vice 
accounts, as well as accounts 
used by the vendor for support 
purposes.  The passwords 
should be a minimum of seven 
characters. 

The default passwords should force the user to enter a 
new password prior to use in a production environment.  
The minimum password length should be seven 
characters. 

B7  If the application or third-party 
application uses external libraries, 
gems, or other open-source 
resources, they should be obtained 
from a reliable source. 

Open-source libraries and functions should be checked to 
ensure proper coding practices are followed or that the 
information sourced has not been tampered with. 

B7.1   If using open-source resources, 
all unnecessary functions and 
resources should be disabled or 
removed and only documented 
functions and security processes 
be allowed to execute.   

All unnecessary functions and services inherited from the 
open-source resource should be removed or disabled to 
prevent their misuse.  

B8  All software modifications (new, 
changed, additions, etc.) should be 
tested in detail. 

Low-level unit testing of the software should be performed 
and recorded. This may require writing specific test 
software or modifying calling functions to specifically cover 
boundary checking and error handling. 

B9  All software modifications should be 
reviewed by a Peer Reviewer. 

All software should be subject to a detailed code review to 
ensure the secure coding standards have been followed 
and no potential vulnerabilities exist. The reviewer should 
also check that the low-level module testing performed is 
sufficient. 



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 9 

Terminal Software Security Best 
Practices Guidance 

B10  All necessary files should be signed 
and their signatures verified before 
use, 

All executable files should be signed. By default, all other 
files should also be signed unless there is clear, 
documented justification why a signature is not required 
(e.g., because the file cannot affect the security of the 
device).  

B10.1  All signatures should be verified 
by the PTS POI approved 
firmware prior to use. 

The firmware will have the ability to verify file signatures 
and will delete anything that fails verification. This feature 
should be used to verify all signatures. 

B10.2  All executable files should be 
signed. 

This applies to any files executed or interpreted on the 
system (either by the firmware or the application). If the 
application is interpreting commands from a file, the 
firmware will not enforce that check; therefore it is vital that 
the application does so.  

B10.3  EMV Certification Authority 
Public Keys should be signed. 

These represent the start of the chain of trust for 
authentication of smartcard transactions, and should be 
validated and signed prior to download.  

B10.4  Software should be signed using 
a secure cryptographic device 
provided by the terminal vendor. 

The firmware will have the ability to verify file signatures, 
and the terminal vendor will provide a signing tool that 
utilizes a secure cryptographic device to generate those 
signatures. This signing tool should be used.  

B10.5  The signing process should be 
performed under dual control. 

The signing tool will have the ability to be used under dual 
control. It should be managed such that no single person is 
able to sign files. If two secrets (passwords or PINs) are 
required for operation of the tool, no single person should 
know both secrets.  

B10.6  All source code should be 
reviewed against the 
organization’s coding standards 
prior to signature. 

The principles of dual control should extend to code 
review. All software should be reviewed before it is signed. 

B11  The features provided by the 
firmware should be used if 
applicable. 

The application does not provide methods for the execution 
of un-authenticated functions (e.g., it should not provide its 
own VM, IP stack, scripting language, etc.). The PTS POI 
device features of the firmware should be used.  

B11.1  The application should use a 
PTS approved random number 
generator for the generation of 
any random values required for 
the secure operation of the 
applications (EMV UN, protocol 
nonces, etc.). 

Use the random number generator provided by the PTS 
POI approved device firmware.  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 10 

Terminal Software Security Best 
Practices Guidance 

B12  Patches and updates are delivered to 
customers in a secure manner with a 
known chain of trust. 

Software patches must be distributed in a manner that 
prevents malicious individuals from intercepting the 
updates in transit, modifying them, and then redistributing. 
All download packages should be signed. 

 

  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 11 

C: Device-Level Testing 
In addition to the low-level unit testing covered in Section B, testing of the device as a whole should be 
performed before the software is released. This should be performed on the relevant PTS POI approved 
device running the relevant PTS POI approved firmware. 

Terminal Security Security Best 
Practices Guidance 

C1  Test scripts should be developed, 
reviewed, and maintained to 
ensure they represent the 
production environment. 

Test scripts should be developed, reviewed, and maintained 
using peer review to ensure that they are complete and 
provide for both positive and negative testing.  

C2  Any application change should 
result in regression testing for that 
application.   

For any application change, it is important to test the software 
and not just the changed components to ensure there haven’t 
been any unintended consequences. Appropriate regression 
test scripts should be followed, and results should be 
documented.  

C3  The application should be tested 
with the complete solution in as 
close to a production environment 
as possible.  

The application should be loaded into a functioning device 
and tested in an environment that represents a production 
environment to ensure no unintended errors or issue is 
present. Test scripts should be followed, and results should 
be documented. 

C3.1  The application should undergo 
a series of negative testing to 
ensure errors are handled 
correctly.  

The application should be loaded into a functioning device, 
tested in an environment that represents a production 
environment, and subjected to common issues that would 
occur in the normal operation of the device to ensure errors 
are handled correctly. Test scripts should be followed, and 
results should be documented. 

C4  The application should be tested in 
accordance with the defined 
security plan as specified in B1.5. 

The application should be loaded into a functioning device 
and tested in accordance with the defined security plan.  

  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 12 

D: Internal Process Reviews 
In addition to the detailed line-by-line code reviews covered in Section B, it is important for the 
organization to conduct higher-level reviews to ensure the procedures in place are being followed, and 
that those procedures themselves are still valid and sufficient. 

Terminal Software Security Best 
Practices Guidance 

D1  Assign internal review personnel. Define and document individuals responsible for conducting 
higher-level reviews and specifying their frequency. 

D2  A release review should be 
performed by the Release Authority 
prior to any software release. 

As a final stage before software is released, checks should 
be in place to ensure all of the required processes have been 
completed. 

D2.1 Are all code reviews complete? Is there evidence to show that all software modifications have 
been reviewed by the correct people, and that no code 
changes have been slipped in without review? 

D2.2  Is all testing complete? Is there evidence that all testing is complete? 

D2.3  Has all documentation been 
updated? 

Has all relevant documentation been updated? 

D2.4  Is the software release note 
correct? 

Software releases should be accompanied by a release note. 
This review should check that the details are correct and 
sufficient. 

D3  Conduct a training review. Are the Security Champion and Software Developer’s staff 
properly trained and keeping up to date with the latest 
threats? 

D4  Published attacks against any third-
party (e.g., open-source) software 
should be frequently reviewed. 

Is there evidence to show that the versions of all third-party 
software are recorded and published attacks are monitored 
and addressed? 

D5  The organization’s secure coding 
standards should be regularly 
reviewed against the latest threats 
identified during ongoing security 
awareness training. 

Is there evidence to show that the latest threats are 
understood and secure coding standards updated 
accordingly? 

D6  Legacy applications should be code-
reviewed to the new coding 
standard. 

Where secure coding standards have been updated, the 
changes should be applied to existing software. A timescale 
for completing this work should be agreed, and progress 
against this should be monitored. Where it is not practical to 
modify parts of the existing software to the new standards, a 
full review should be performed to ensure no vulnerabilities 
exist. Any vulnerabilities found must be fixed immediately. 

D7  Are file-signing procedures being 
followed? 

Is the documented process for file signing under dual control 
being followed? 

  



 

PCI Terminal Software Security Best Practices  December 2014 
© 2014 PCI Security Standards Council, LLC. All Rights Reserved. Page 13 

Useful references 
 CERT Secure Coding Guidelines (https://www.securecoding.cert.org) 

 PCI Payment Application Data Security Standard (PA-DSS) (www.pcisecuritystandards.org) 

 PCI PIN Transaction Security Point of Interaction Standard (PTS POI) 
(www.pcisecuritystandards.org) 

 PCI Point-to-Point Encryption Standard (P2PE) (www.pcisecuritystandards.org) 

 

https://www.securecoding.cert.org/

	Document Changes
	Introduction
	Purpose of This Document
	Relationship between other PCI standards
	Examples of Potential Threats
	Secure Software-Development Life Cycle
	Role Definition within TSSBP

	A: Security-Awareness Training
	B: Secure Software-Development Process
	C: Device-Level Testing
	D: Internal Process Reviews
	Useful references

