Standard: PCI PIN Security Requirements
Date: June 2019
Author: PIN Assessment Working Group
PCI Security Standards Council

Information Supplement:
PIN Security Requirement 18-3 – Key Blocks
The intent of this document is to provide supplemental information. Information provided here does not replace or supersede requirements in any PCI SSC Standard.
Table of Contents

- **Document Changes** ... i
- **Executive Summary** .. 3
- **1. Technical FAQs** ... 4
 - 1.1 Key Blocks .. 4
 - 1.2 Additional Relevant Existing PIN Security Requirements Technical FAQs – PIN Security Requirement 18 .. 7
 - 1.3 Additional Relevant Existing Point of Interaction (POI) Security Requirements Technical FAQs .. 8
- **2 Glossary** .. 11
- **About the PCI Security Standards Council** ... 12

The intent of this document is to provide supplemental information. Information provided here does not replace or supersede requirements in any PCI SSC Standard.
Executive Summary

Per *PCI PIN Security Requirements*, Requirement 18-3, “Key Blocks,” encrypted symmetric keys must be managed in structures called Key Blocks. The key usage must be cryptographically bound to the key using accepted methods, such that it must be infeasible for the key to be used if the usage attributes have been altered.

The phased implementation dates are as follows:

Phase 1 – Implement Key Blocks for internal connections and key storage within service provider environments. This would include all applications and databases connected to hardware security modules (HSM). Effective date: **1 June 2019**.

Phase 2 – Implement Key Blocks for external connections to associations and networks. Estimated timeline for this phase is 24 months following Phase 1, or **1 June 2021**.

Phase 3 – Implement Key Blocks to extend to all merchant hosts, point-of-sale (POS) devices and ATMs. Estimated timeline for this phase is 24 months following Phase 2, or **1 June 2023**.

Acceptable methods of implementing the integrity requirements include, but are not limited to:

- A MAC computed over the concatenation of the clear-text attributes and the enciphered portion of the Key Block, which includes the key itself,
- A digital signature computed over that same data,
- An integrity check that is an implicit part of the key-encryption process such as that which is used in the AES key-wrap process specified in ANSI X9.102.

This document, which contains related Technical FAQs and Glossary, is supplemental to the *PCI SSC Information Supplement: Cryptographic Key Blocks*.

References to Key-Block Protection Keys are specific to implementations using *ANSI TR-31: Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms*.
1 Technical FAQs

1.1 Key Blocks

Q 1 Do Key Blocks apply to all symmetric keys?
 A Key Blocks must be used for all PIN security-relevant symmetric keys exchanged or stored under another symmetric key—for example, Zone Master Keys (ZMKs), Key-Encipherment Keys (KEKs), Base Derivation Keys (BDKs), Terminal Master Keys (TMKs) and PIN-Encryption Keys (PEKs). They may optionally be used as a best practice for account data security-relevant symmetric keys. Check with applicable payment brands to understand applicability of Key Blocks to symmetric keys used for non-PIN-related purposes.

Q 2 Does phase 1 (“...internal connections and key storage with service provider environments...”) apply to HSM connections on incoming transactions?
 A No. Incoming transactions from an external organization is Phase 2. Incoming transactions from POI devices is Phase 3. However, in Phase 1, service provider applications creating command strings to HSMs will need to account for the increased length of a Key Block as compared to legacy cryptograms.

Q 3 What are Key Blocks and how do they work?
 A A Key Block contains a protected key, its usage constraints, and other data that is wrapped (encrypted) using a key-wrapping mechanism. Details of how Key Blocks work are described in ISO 20038: Banking and related financial services — Key wrap using AES and ANSI TR31: Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms. See the PCI SSC Information Supplement: Cryptographic Key Blocks for additional information.

Q 4 Regarding the implementation dates, does that mean all previously established keys have to be changed or that only from that point onwards, newly exchanged keys must use Key Blocks?
 A All previously established keys can still be used. Key-Block Protection Keys (KBPKs) must be established for all connections sending keys after the implementation date. However, there is no expectation for existing Key-Encipherment Keys (KEK) to be reissued as KBPKs. An existing KEK can be converted to a KBPK if your HSM vendor has a method to accomplish this or you have the components or shares to recreate it as a KBPK.

Q 5 In implementing Key Blocks, can existing Key-Encipherment Keys be converted to Key-Block Protection Keys?
 A Yes, KEKs may be converted to Key-Block Protection Keys through mechanisms provided by the HSM vendor.

Q 6 How is the Key-Block Protection Key established with another organization or POI devices?
 A The KBPK effectively replaces the function of a KEK, and as such, it is to be established in the same manner as Key-Encipherment Keys—such as using manual mechanisms, asymmetric techniques, or via a key-injection mechanism, for example at a key-injection facility for POI devices.
Q 7 How do Key Blocks affect (or relate to) the dates published in PCI PIN v3 regarding fixed key TDES and support for ISO PIN block format 4?
 A There isn’t any relationship between fixed keys used for PIN-block encryption and Key-Encrypting Keys subject to the new Key-Block requirements. However, consideration should be given to coordination in any future changes. For example, migration to AES PIN blocks should be considered in line with the establishment of AES KBPKs for key exchange to utilize efficiencies for the organization and limit disruptions.

Q 8 What PCI PTS POI versions support Key Blocks? And what phase requires Key-Block usage in PIN acceptance devices?
 A All POI PIN acceptance devices beginning with v2 in 2007 support TR-31 or equivalent. Implementation of Key Blocks in POS PIN acceptance devices and ATMs is required in Phase 3.

Q 9 How will a PIN assessor determine compliance with the various Key-Block implementation phases?
 A The assessor shall examine (a) configuration settings on HSMs and commercial applications, and (b) design documentation for proprietary software—using techniques similar to determining the propriety of ISO PIN blocks. Additional guidance will be provided as part of PCI PIN Security Training.

Q 10 What if my commercial processing software has not implemented support for Key Blocks by the required effective date?
 A Contact the payment brand(s) of interest at https://pcissc.secure.force.com/faq/articles/Frequently_Asked_Question/How-do-I-contact-the-payment-card-brands.

Q 11 Are issuers required to exchange symmetric PIN keys in Key Blocks?
 A Yes, issuers must be able to support Key Blocks for connections involving PIN-Encryption Key exchange with processors or switches (to be compliant with Phase 2 migration). Phase 1 and Phase 3 effective dates are intended primarily for PIN acquiring environments.

Q 12 Why are issuers required to support Key Blocks for PIN keys when the PCI PIN Security Requirements (PSR) is intended for the acquiring domain?
 A Issuer support is required for interoperability purposes in order to receive PIN blocks for cardholder authentication by the issuer or its agent.

Q 13 Do Key Blocks apply to issuer keys such as PVV, CVV, EMV personalization keys, etc.?
 A No. The scope of the PIN Security Requirements does not include issuer keys used for the purpose of cardholder authentication, whether for usage at the issuer, usage at or conveyance to an Issuer Processor or a Card Personalization vendor. However, it is recommended as a best practice.
Q 14 Is it required for Key Blocks to be implemented to specify key usage directional flow between two organizations—for example, encrypt only or decrypt only?

A No, the PIN Security Requirements are not that granular and the requirement for Key Blocks does not require organizations to change anything they currently do as far as mode of use. Specifically, Key-Block implementation as delineated in the PIN Security Requirements does not require that for transactions received, the key usage is defined as decrypt only, or for transactions sent the key usage is defined as encrypt only. However, organizations should contact the entities they are exchanging keys with to understand if there are additional considerations regarding this setting.

Q 15 When implementing Key Blocks, are there any Modes of Use options included in TR-31 that are not permitted for use?

A No, the PIN Security Requirements do not include restrictions on the use of any of the available Modes of Use identified in TR-31.

Q 16 Per Requirement 18-3: Encrypted symmetric keys must be managed in structures called Key Blocks. The key usage must be cryptographically bound to the key using accepted methods. Acceptable methods of implementing the integrity requirements include, but are not limited to:

- A MAC computed over the concatenation of the clear-text attributes and the enciphered portion of the Key Block, which includes the key itself;
- A digital signature computed over that same data;
- An integrity check that is an implicit part of the key-encryption process such as that which is used in the AES key-wrap process specified in ANSI X9.102.

What is an example of an acceptable interoperable method?

A ISO-20038 illustrates an acceptable interoperable standard.

For all methods used, the encrypted key and its attributes in the Key Block shall have integrity protection such that they cannot be modified without detection. Modification includes, but is not limited to:

- Changing or replacing any bit(s) in the attributes or encrypted key
- Interchanging any bits of the protected Key Block with bits from another part of the block

Q 17 Where can an organization get environment specific implementation details for its use?

A Each organization differs regarding its processing, architecture, and services; therefore it is recommended to consult with your HSM vendors, application providers, internal architects, and the like to understand specific implementation requirements for your organization.

Q 18 What are the considerations for HSMs?

A HSMs must support Key Blocks, and entities should check with their HSM vendor(s).
1.2 Additional Relevant Existing PIN Security Requirements Technical FAQs – PIN Security Requirement 18

Q 19 December (update) 2016: When encrypted symmetric keys are managed in structures called Key Blocks, does this apply to both when the keys are transported and when stored?

A Yes, it applies to the secure exchange of keys between two devices that share a symmetric Key-Exchange Key and for the storage of keys under a symmetric key. It is applicable to any time an encrypted key exists outside of an SCD.

This applies for both fixed and master/session key scenarios. It does not apply to working keys for DUKPT or similar unique-key-per-transaction implementations where these keys are stored inside an SCD. However, it does apply to related keys such as Base Derivation Keys and initial DUKPT keys.

Q 20 November 2015: Is the implementation of TR-31 the only method for meeting the requirement that encrypted symmetric keys must be managed in structures called Key Blocks?

A No. TR-31 or any equivalent method can be used. Any equivalent method must include the cryptographic binding of the key-usage information to the key value using accepted methods. Any binding or unbinding of key-usage information from the key must take place within the secure cryptographic boundary of the device.

Q 21 November 2018: PIN Security Requirement 18 states that encrypted symmetric keys must be managed in structures called Key Blocks. This applies to both conveyance and storage. Does this only apply only to TDEA keys?

A No. As stipulated in ANSI X9.24-1: Retail Financial Services Symmetric Key Management Part 1: Using Symmetric Techniques, both AES and TDEA keys are required to be managed in Key Blocks.
1.3 Additional Relevant Existing Point of Interaction (POI) Security Requirements Technical FAQs

Q 22 Versions 2 and higher stipulate that the device must provide support for TR-31 or an equivalent methodology for maintaining the TDES key bundle. Under what circumstances does this apply?

A If the device supports the exchange of TDEA keys between itself and another device (e.g., a remote host) encrypted under a shared symmetric key, the device must provide support for TR-31 or an equivalent methodology for this key conveyance. This does not imply that the device must support TR-31 or an equivalent methodology between the device and an external ICC reader, but it optionally may do so. The device may also optionally support TR-31 or an equivalent methodology for the storage of keys encrypted under a symmetric key. Any equivalent method must include the cryptographic binding of the key-usage information to the key value using accepted methods. Any binding or unbinding of key-usage information from the key must take place within the secure cryptographic boundary of the device.

Q 23 TR-31 defines three keys. A Key-Block Protection Key (KBPK), a Key-Block Encryption Key (KBEK) and a Key-Block MAC key (KBMK). The KBPK is used to calculate the KBEK and the KBMK. Can the KBPK be used for any other purpose?

A No, in order to meet the requirement that a key is used only for a single purpose as defined in ANSI X9.24, the Key-Block Protection Key is only used to calculate the KBEK and the KBMK and is not used for any other purpose. Only the KBPK is used to generate the KBEK and the KBMK key; no other key is used for this purpose.

Q 24 Requirement B11 stipulates that the device must support TR-31 or equivalent. Key Blocks that support padding include a key length that allows the key to be distinguished from the pad characters. In TR-31, the key-length information and padding are encrypted along with the key itself by the KEK (termed the Key-Block Encryption Key). Does this violate the requirement that a cryptographic key be only used for one purpose, e.g., key encipherment?

A No. For all TDEA modes of operation, the three cryptographic keys (K1, K2, K3) define a TDEA key bundle. The keys are used in three operations, such that they form the logical equivalent of one key. Keys used in conjunction with a key bundle cannot be unbundled for any purpose—i.e., must never be used separately for any other purpose. A key used to encrypt the key bundle may include in the encrypted portion of the key bundle the key-length information and padding as necessary to protect the integrity of the key bundle.

Q 25 TR-31 or an equivalent methodology must be used whenever a symmetric key is downloaded from a remote host enciphered by a shared symmetric key. Are there other circumstances where TR-31 or an equivalent methodology applies or does not apply?

A Devices must support TR-31 or an equivalent methodology for key loading whenever a symmetric key is loaded encrypted by another symmetric key. This applies whether symmetric keys are loaded manually (i.e., through the keypad), using a key-injection device, or from a remote host. It does not apply when clear-text symmetric keys or their components are loaded using standard dual-control techniques.
Q 26 In support of the conversion of deployed devices to the use of TR-31, can a key previously loaded for another purpose, such as a KEK, be re-statused as a TR-31 Key-Block Protection Key.

A No, loading of a key into a slot (register) must set the slot to its given function. If the slot’s function is changed—or if a new clear-text key is loaded into the slot without authentication using dual control—all other keys in the device (or at least all keys that were previously protected under the key that was previously in the slot) must be erased. This mechanism helps ensure that a device cannot be maliciously taken over.

Q 27 May (update) 2018: TR-31 or equivalent support is required as an option for any device that allows the loading of symmetric keys that are encrypted by another symmetric key as a configuration option. To implement TR-31 or equivalent for devices that are currently implementing a non-TR-31 symmetric methodology, what characteristics must the device have to support this migration?

A The device must enforce the following where applicable:

- The conversion from a less secure methodology (non-TR-31 or non-TR-31 equivalent) to a more secure (TR-31 or equivalent) methodology must be nonreversible.

- When entering the plaintext KBPK (or equivalent) through the keypad, it must be entered as two or more components and require the use of at least two passwords/authentication codes. The passwords/authentication codes must be entered through the keypad or else conveyed encrypted into the device.

 These passwords/authentication codes must either be unique per device (and per custodian), except by chance, or if vendor default, they are pre-expired and force a change upon initial use. Passwords/authentication codes that are unique per device can be made optionally changeable by the acquirer, but this is not required. Passwords/authentication codes are at least seven characters.

 Entry of key components without the use of at least two separate passwords/authentication codes results in the zeroization of pre-existing acquirer secret keys—i.e., the invoking of the key-loading function/command causes the zeroization prior to the actual loading of the new key. For devices supporting multiple-acquirer key hierarchies (e.g., multi-acquirer devices), only the hierarchy (e.g., specific TMK and working keys) associated with the key being loaded must be zeroized. In all cases, the authentication values (passwords, authentication codes, or similar) for each user on a given device must be different for each user.

- Loading of a plaintext KBPK (or equivalent) using a key loader must be done using dual control and require the use of two or more passwords/authentication codes before injection of the key. These passwords/authentication codes are entered directly through the keypad of the applicable device or are conveyed encrypted into the device and must be at least seven characters in length. These passwords/authentication codes must either be unique per device (and per custodian), except by chance, or if vendor default, they are pre-expired and force a change upon initial use. Plaintext keys or their components are never permitted over a network connection.

 Injection of plaintext secret keys or their components where the receiving device does not itself require the use of at least two passwords/authentication codes for injection results in the zeroization of pre-existing acquirer secret keys. For devices supporting multiple-acquirer key hierarchies (e.g., multi-acquirer devices), only the hierarchy (e.g., specific TMK and working keys)
associated with the key being loaded must be zeroized. In all cases, the authentication values
(passwords, authentication codes or similar) for each user on a given device must be different for
each user.

- It is not permitted to load the KBPK to the device encrypted by a non-TR-31 or non-TR-31
 equivalent symmetric key. However, the KBPK may be loaded using asymmetric techniques.

Q 28 The Guidance for DTR B11 states, A device may include more than one compliant key-exchange and
storage scheme. This does not imply that the device must enforce TR-31 or an equivalent scheme, but it
must be capable of implementing such a scheme as a configuration option. If the use of TR-31 as the
key-exchange mechanism is optional, must there be an explicit device configuration change to
enable/disable TR-31 as the “active” key-exchange scheme?

A Yes, an explicit configuration change is required. The change is considered a sensitive service and must
meet the requirements of B7, “Protection of Sensitive Services.”

Q 29 August 2011: When a device is converted to or otherwise implements TR-31, the conversion must
be one-way. On a device supporting multiple independent key hierarchies, such as one designed
to support multiple acquirers, does the implementation apply to all key hierarchies on the device?

A No, a device supporting multiple independent hierarchies may implement TR-31 (or equivalent) on a
hierarchy-by-hierarchy basis.
2 Glossary

The following terms and acronyms used within this document have the meanings provided below.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Derivation Key (BDK)</td>
<td>A cryptographic key, which is used to cryptographically compute another key. A derivation key is normally associated with the Derived Unique Key Per Transaction key-management method.</td>
</tr>
<tr>
<td>Key Block</td>
<td>Block containing a protected key, its usage constraints and other data, that is wrapped (encrypted) using a key wrapping mechanism</td>
</tr>
<tr>
<td>Key-Block Encryption Key (KBEK)</td>
<td>The key that is derived from the Key-Block Protection Key and that is used solely for enciphering the Key Block described in this document.</td>
</tr>
<tr>
<td>Key-Block Authentication Key (KBAK)</td>
<td>The key that is derived from the Key-Block Protection Key and that is used solely for calculating the MAC over the Key Block described in this document.</td>
</tr>
<tr>
<td>Key-Block Protection Key (KBPK)</td>
<td>The derivation key from which the Key-Block Encryption Key and the Key-Block Authentication Key are derived; this key is used for no other purpose.</td>
</tr>
<tr>
<td>Key-Encrypting (Encipherment or Exchange) Key (KEK)</td>
<td>A cryptographic key that is used for the encryption or decryption of other keys.</td>
</tr>
<tr>
<td>PIN-Encipherment Key PIN-Encryption Key (PEK)</td>
<td>A PEK is a cryptographic key that is used for the encryption or decryption of PINs.</td>
</tr>
<tr>
<td>Service Provider</td>
<td>An entity (that is not a payment brand), acting on behalf of an Acquiring organization for any of the following activities:</td>
</tr>
<tr>
<td></td>
<td>• Acquiring, processing, storage, or transmission of PIN-based payment transactions</td>
</tr>
<tr>
<td></td>
<td>• Management of cryptographic keys associated with PIN-based payments—e.g., Certificate Authority, Key-Injection Facility</td>
</tr>
<tr>
<td></td>
<td>Note: If an entity provides a service that involves only the provision of public network access—such as a telecommunications company providing just the communication link—the entity would not be considered a service provider for that service (although it may be considered a service provider for other services).</td>
</tr>
<tr>
<td>Terminal Master Key (TMK)</td>
<td>This is a symmetric key used to encrypt other cryptographic keys at the point of interaction.</td>
</tr>
<tr>
<td>Zone Master Key (ZMK)</td>
<td>Also known as a Key-Encipherment Key</td>
</tr>
</tbody>
</table>
About the PCI Security Standards Council

The PCI Security Standards Council is an open global forum that is responsible for the development, management, education, and awareness of the PCI Data Security Standard (PCI DSS) and other standards that increase payment data security. Founded in 2006 by the major payment card brands American Express, Discover Financial Services, JCB International, Mastercard Worldwide, and Visa Inc., the Council has over 600 Participating Organizations representing merchants, banks, processors, and vendors worldwide. To learn more about playing a part in securing payment card data globally, please visit: